
JIM V1: packaging and installation strategy
(DRAFT)
Gabriele Garzoglio,
Feb 5, 2003
Apr 10, 2003

Abstract
This document highlights the differences on the packaging and installation strategy
between JIM v0 and v1 and reports design decisions. It is a technical document, which
relies on the knowledge of the organization of the packages of JIM V0.

Use of XML
During the development of JIM V0, we explored the management of the configurations
of various JIM products using XML. This approach turned out to be flexible and
extensible and we decided to base the whole configuration management of V1 in XML.
Configuration files in this context are files that either configure the behavior of the jim
products or describe the configuration of resources at a site.
A set of new tools has been developed to allow XML manipulation of configuration files.
Central to the release of V1 is the use of the “xml_meta_configurator”, a tool used to
create configuration files in XML. We have also introduced the use of “galax”, an
implementation of Xquery fully compliant with the W3C specifications, to manipulate
the configuration files. As in V0, python scripts use “pyxml” to parse and manipulate
XML documents.

Installation and configuration strategy
This paragraph is the result of a discussion between Tom Rockwell, Igor Terekhov and
Gabriele Garzoglio. Tom is going to work on this task.
The installation procedure for JIM V0 is well understood and debugged, but it is
complex. The outcome of this work should lead to an easy installation procedure for JIM
V1.
We have decided to brake down the installation of the JIM suite into 2 distinct phases:
product installation and product configuration. This is somewhat different from the
current installation procedure, where each product is installed and configured separately.
In V1, there is an “umbrella” product, “samgrid”, whose responsibility is installing the
whole JIM V1 suite, according to the specifications of the administrators. “samgrid” can
be packaged as a ups product and rely on ups for product installation.
The “samgrid” installation action will

1. Interact with the installer in order to create an installation plan. The interaction is
driven by the “xml_meta_configurator” and the plan is saved in XML. Some
examples of the questions to the installer are “Do you want to install the samgrid
client, the submission and queuing system, the broker infrastructure, the execution
framework, the monitoring framework?”, “Where is the local area where to install
the software (need root write access) ?”

2. Gather information that may be necessary upfront in order to install some
products, before even tailoring them. Currently some jim products need this
interaction in order to be installed; we need to investigate if these step can be
deferred until tailoring of the products.

3. Interact with the central product server (today ups/upd at FNAL) in order to
install the products needed. This step should provide the transfer of the packages
to the remote site in a reliable way e.g. by automatically retrying the single
products installation commands (namely “upd install”)

The “samgrid” configuration (tailor) action will
1. Interact with the installer in order to produce a site configuration document, when

applicable i.e. depending on the installation plan. For example, when installing an
execution site, samgrid needs to record the description of the resources; this is not
needed when installing the client software or the queuing system or the brokering
infrastructure.

2. Include in the site configuration the knowledge of the grid global parameters. For
example, the location of the broker or the default log server (central for now).
This knowledge is currently kept in the product “jim_config”, which we don’t use
anymore. This knowledge will be part of the environment to run servers
(responsibility of “server_run”) and we’ll be setup when using the client (we need
to develop the tool for extracting this information from the site configuration and
make it available as environment variables).

3. Run the tailoring procedure of each product in turn. In principle, since each
product uses the xml_meta_configurator for the tailoring procedure and samgrid
known where each of the products are, the questions to configure all the products
can be gathered all upfront. In practice, we should investigate whether all the
products can be configured even if their dependencies have not been configured
yet

Details
1. Each product will have its own configuration file. The site configuration should

express what packages of the JIM suite are installed and provide pointers to the
local configuration files. This will be useful for monitoring purposes.

2. For the initial version, samgrid will be available via ups/upd. We are considering
of providing a bootstrap script that installs ups/upd; this would be useful for those
configurations where sam is not needed, namely “client”, “submission”,
“brokering” sites.

3. Each product that samgrid can install will have 3 ups actions:
i. ask: this action starts up the interview with the administrator to gather the

configuration information needed for the given product; it saves the
configuration in the etc area of the product

ii. act: this action accepts as an input the XML document of the “answers”
created above and takes the necessary actions to implement the
product configuration (e.g. create directories, configuration files, etc.)

iii. tailor: this action calls the “ask” then the “act” actions

4. Product configuration and meta-configuration (which drives
xml_meta_configurator through the interview) are both located in the etc area of
the product

5. Some configuration steps (“act” action) can be taken only as root. Each product
must check if it has enough privileges to take certain actions; if not exit with an
error code (for now “exit 2”)

6. Each interview meta-configuration file will have an xml tag called
“interview_schema_version” to introduce a versioning scheme of the form x_x.
This ordering facilitates product upgrade, since for a new version of a product it
may still be possible to use old answers to be configured

7. Version consistency among the products of the JIM suite is managed tagging
“current” (“old”, “test”, etc.) the products in upd. Updates at a site can be
automated by analyzing what’s current via upd versus what’s current locally.

8. samgrid will not change the content of any interview files
9. xml_meta_configurator should be upgraded to accept (as 3rd argument) an XML

file of default answers; defaults provided via this mechanism should have higher
precedence to the default mechanism specified in the interview XML file; the
XML default file should be able to specify whether it is needed to ask the
question indicating the default, or accepting the default as an answer silently. This
mechanism would facilitate the communication of common set of parameters
between samgrid and the various products; it would also facilitate product
upgrades (see also point 6)

The packaging strategy
The dependencies of the packages of the JIM V1 software suite are shown in Figure 1.

Figure 1: The products of the JIM V1 software suite. Dependencies are indicated by arrows. For
example, “samgrid” depends on “xml_meta_configurator”.

There are a few novelties with respect to JIM V0.
1. the central role of the xml_meta_configurator; all the jim products that need

deployment depend on it
2. the introduction of “galax”. Galax is an implementation of Xquery fully compliant

with the W3C specifications
3. the introduction of the “jim_client” package and the new role of “samgrid”. JIM

V1 adopts a 3-tier architecture implemented in Condor-G v6.5: submission client
and queuing system are here physically and conceptually separated. The samg
client (SAMGrid-JDL compiler + condor_submit infrastructure), currently in the
package “samgrid”, will be moved to the new jim_client; the job queuing
mechanism will stay in “jim_broker_client”; samgrid will become a pure
“umbrella” product to manage the installation of the jim suite (see “Installation
and configuration strategy”)

4. the product “jim_info_providers” of JIM V0 is split in two: resource advertising
mechanism is moved to “jim_adverise”; configuration of globus MDS +
implementation of the MDS information providers stays in “jim_info_providers”.
This separation is somewhat natural: distinct people maintain the two parts;
“jim_info_providers” V1 is flavor dependent, while jim_advertise is not (it’sall
python code); the two products were initially put together with the goal of
creating single information providers, that could be used by both MDS and

jim_advertise: this hasn’t happened during V0 and will not happen in V1; if this
becomes an issue for V2, we can rearrange the organization of the two products.

5. the product “jim_config” does not exist anymore. Global parameters (such as the
location of the broker) will be defined in the environment by looking at the site
configuration file. “server_run” can already do this for the jim servers; we need to
develop the tool for the clients (the tool could then be wrapped in a ups table file
for homogeneity).

6. we should try to minimize the dependency of sam_config to samgrid by saving
relevant sam_config information (e.g. sam corba naming servers IORs) to the site
configuration only (Figure 1 shows all the products that need information from
sam_config)

7. the product jim_jobmanegers contains the experiment specific
submission/monitoring/cleaning commands to the underlying analysis facilities
(e.g. sam, caf, d0mc); the entry points to these facilities (e.g. the location of the
sam command) will be available to the job managers as globus job manager tools
(libexec/globus-gram-job-manager-tools.sh). The jim_jobmanagers configuration
procedure will be responsible for defining such entry points. The ability for a job
to use such facilities (together with others, e.g. ups/upd) will be advertised to the
broker; the presence of this attribute on the machine classads means that a job will
find on its PATH the commands belonging to the advertised facility (e.g. sam,
ups, etc.).

8. the product jim_sandbox contains the scripts that implement input sandboxing in
JIM; the scripts will be principally used by the jim jobmanagers. We have to
investigate whether we want to support the installation of this product by itself:
the use case is if administrators want to enable the use of sandboxing for JIM
from any of the globus jobmanagers by a vanilla job; the tailoring of this product
will configure globus to treat the sandboxing scripts as a jobmanager tool (see
point 7); the user executable will handle sandboxing using the product’s scripts
directly; this will probably happen transparently from the user by the use of thin
wrappers (we still need to check whether the jobmanager makes available to the
executable the use of its jobmanagers tools).

The xml database
Each product uses an xml document for its configuration. This document is the result of
an interview with the local administrator/installer and it is driven from a product specific
xml-meta-configurator template1. This configuration document is going to be available
from the local xml db (its exact location in terms of the xml db name space is yet to be
determined).

The name space of a product in the xml db
This paragraph discusses how to store configuration files in the XML database with
consistent namespace conventions. It is a work in progress section.

1 Defaults can be specified for some configuration values; for other “internal” values, the default should be
written directly without asking the admin.

Namespace Hierarchy
All the information in the database is stored in a base collection /db. Collections form the
namespaces for storing the configuration files related to every specific installation. Fully
qualified host names forms the primary namespace, package name forms the secondary
namespace and the package version forms the tertiary namespace. All the configuration
files are stored as xml documents in the tertiary namespace.
Example:
Consider a site samadams.fnal.gov with following packages installed

• Samadams.fnal.gov
1. sam_common v1_2
2. sam_station_idl v2_3
3. sam_common_idl v1_4
4. corba_common v3_1
5. jim_broker_client v1_2
6. jim_advertise v2_4

Suppose jim_advertise and jim_broker_client have configuration files as output of
the xml_meta_configurator for the above installation then the database will have
following entries for this site –

Collections Documents
/db/samadams.fnal.gov/jim_advertise/v2_4 jim_advertise_config.xml
/db/samadams.fnal.gov/ jim_broker_client/v1_2 jim_broker_client_config.xml

Advantages

• Information is stored in a structured manner.
• Fixed set of rules to access the information.
• Ease of maintenance.
• Can store configuration for different versions of the same package installed on the

system.
Independent of the database url used to store them. (local or maintained by Fermi lab)

API’s/Tools for accessing configuration data from xml database
Package containing API’s and tools to access the configuration data and xml database are
listed below –

Package: Jim Config

Dependencies: xml_common_lib, xmldb_client, xml_meta_configurator

JimConfigManager API’s for managing the configuration information in xmldb

Package: Xmldb Client

Dependencies:

idmgr API’s to manage Job IDs

xmldb API’s to interface with the xmldb

xmldb_command Command line interface for xmldb APIs

read_xml_value.py Program to read any attribute from xmldb

set_xml_value.py Program to set any attribute in xmldb

Package: Xml Common Lib

Dependencies:

PyXmlObject API’s to convert xml to python object

XmlDomUtils API’s for Dom

